
Approximation to density functional theory for the calculation of band gaps of semiconductors

Luiz G. Ferreira*
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, São Paulo, Brazil

Marcelo Marques† and Lara K. Teles‡

Instituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, São Paulo, Brazil
�Received 20 May 2008; revised manuscript received 29 August 2008; published 30 September 2008�

The local-density approximation �LDA� together with the half occupation �transition state� is notoriously
successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a
semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to
be infinitely extended �a Bloch wave�. The answer to this problem lies in the LDA formalism itself. One proves
that the half occupation is equivalent to introducing the hole self-energy �electrostatic and exchange correla-
tion� into the Schrödinger equation. The argument then becomes simple: The eigenvalue minus the self-energy
has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized,
not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar
to the self-interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the
calculation of band gaps and effective masses, we use the self-energy calculated in atoms and attain a precision
similar to that of GW, but with the great advantage that it requires no more computational effort than standard
LDA.
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I. INTRODUCTION

The well-known density functional theory �DFT� �Ref. 1�
is an approach to the theory of electronic structure in which
the electron-density distribution, rather than the many-
electron wave function, plays a central role. The practical
applications of DFT are based on approximations for the
so-called exchange-correlation potential, which describes the
effects of the Pauli principle on the many-electron system. If
we had the exact exchange-correlation potential, we could
solve the many-body problem exactly for the ground state.
Although the potential is unknown, approximations are
made. The most common is the so-called local-density
approximation �LDA�, which locally uses the exchange-
correlation energy density of a homogeneous system. The
LDA to the Kohn and Sham DFT �Ref. 1� is still one of the
most reliable methods for condensed-matter calculations,
having successfully predicted and explained a wide range of
ground-state properties in solid-state physics and chemistry.2

Lately, but very slowly, it is being progressively abandoned
in favor of the many generalized gradient approximations
�GGAs�.3 However, while LDA and GGA have predicted
many ground-state properties with good accuracy, the elec-
tronic properties such as band gaps are significantly smaller
than those from experiment. These discrepancies are caused
by the lack of the discontinuity of the exchange-correlation
potential2 in going from the valence to the conduction band.
Several methods for overcoming these limitations have been
proposed. One of them is the GW approximation, in which
one considers the energies of quasiparticles and calculate the
electron self-energy in terms of perturbation theory.4,5 This
procedure has been quite successful, achieving good accu-
racy, but it goes beyond the DFT. Other procedures were also
proposed, among them we can mainly cite the self-
interaction correction �SIC� �Ref. 6�; the atomic SIC �ASIC�
applied to solids,7–9 which is perhaps the procedure closest to

ours; hybrid functionals;10 screened exchange LDA �SX-
LDA� �Ref. 11�; the so-called exact-exchange approach;12

the well-known LDA+U �Ref. 13�; and the work of
Liberman14 and others. Most of these approaches are com-
putationally very demanding, which prohibits their applica-
tion to large systems of atoms.

The Slater half-occupation scheme15–17 was very success-
ful for valence states. One example is that one could obtain
energies which were comparable to the experimental ioniza-
tion energies,17 though, at that time, good spin-polarized
exchange-correlation approximations, as those based on the
approach of Ceperley and Alder, did not exist.6 In order to
illustrate to the reader the quality of the results that can be
obtained, we present in Table I the first and second ionization
potentials of 12 atoms, measured and calculated with LDA
with 1/2 occupation.

Though the precision of the calculated results shown in
Table I is much better than the precision one reaches in the
calculation of band gaps, either by LDA or GGA, it has been
difficult to find a way to make the ionization of 1/2 electron
in extended systems as crystals. Of course the problem is that
a crystal is described by means of Bloch waves and remov-
ing the population of just one Bloch state is of no conse-
quence. In this paper we present a solution to this problem.
We are especially concerned with the calculation of band
gaps in semiconductors, for which we obtain calculated re-
sults that compare very favorably with experiment and are
not computationally demanding. We report the results for 14
semiconductors, including groups II-VI, III-V, and IV. Our
method is inspired by the LDA and by the half ionization
but, at some point, it has to be postulated. The quality of the
results and the ease with which they are obtained show that
our assumptions are very good. Now we develop our
method, which could be properly named as LDA-1/2.

PHYSICAL REVIEW B 78, 125116 �2008�

1098-0121/2008/78�12�/125116�9� ©2008 The American Physical Society125116-1

http://dx.doi.org/10.1103/PhysRevB.78.125116


II. LDA AND HALF IONIZATION IN SOLIDS

Accepting the LDA as a valid approximation to the DF,
the theorem of Janak19 follows,

�E

� f�

= e��f�� , �1�

where E is the total energy of the system and f� is a function
of the occupation of the one-particle Kohn and Sham state �.
It is a well-known fact that the eigenvalue e��f�� is almost
precisely linear with the occupation f�.17 Then integrating

�
−1

0

df�

between the ground state �f�=0� and the ion �f�=−1�, one
obtains

E�0� − E�− 1� = e��− 1/2� = − ionization potential. �2�

At this point we must explain that f�=0 means the occupied
one-electron state of the neutral ground state, f�=−1 means
the state depleted of one electron, and f�=−1 /2 refers to the
state of the half ion depleted of 1/2 electron. Taking another
derivative,

�e�

� f�

= 2S�, �3�

where

S� =� � d3rd3r�
n��r��n��r���

�r� − r���

+
1

2
� � d3rd3r�n��r��

�2Exc

�n�r���n�r���
n��r���

+� � d3rd3r�
n��r��

�r� − r�����

f�

�n��r���
� f�

+
1

2
� � d3rd3r�n��r��

�2Exc

�n�r���n�r�����

f�

�n��r���
� f�

�4�

is named “self-energy” because of the first term in the right.
In LDA the functional derivatives become common deriva-
tives times delta functions. We maintain the functional de-
rivative notation because the final formulas can have ex-
tended use. Because of the linearity of e��f��,17 we may
write

e��− 1/2� = e��0� − S� �5�

and

E�0� = E�− 1� + e��0� − S�. �6�

Equation �6� is quite surprising in its simplicity. The equation
tells us that to restore the ground state, with total energy
E�0�, from an ion with a hole at state � we add an electron
whose energy is the eigenvalue e��0� minus the hole self-
energy. The self-energy is large when the function is much
localized as an atomic wave function, and it is small and zero
when it is much spread as a Bloch function. Since the energy
of the restored ground state must be a minimum, the hole
self-energy must be a maximum. Thus the hole should be
representable by a very localized wave function. This is a
demonstration of the hole localization, though this proof is
based on an approximation �LDA� to the DF theory and on
the linearity assumption. Of course we cannot say that the
localized hole state is truly stationary, especially if its energy
is inside the band continuum of the Bloch states, into which
the localized hole would be scattered.

The self-energy may be thought of as the quantum-
mechanical average of a “self-energy potential” VS�r�� such
that

S� =� d3rn��r��VS�r�� , �7�

where n�=��
��� and

VS�r�� =� d3r�
n��r���
�r� − r���

+
1

2
� d3r�

�2Exc

�n�r���n�r���
n��r���

+� d3r�

�
�

f�

�n��r���
� f�

�r� − r���

+
1

2
� d3r�

�2Exc

�n�r���n�r�����

f�

�n��r���
� f�

, �8�

depends on the state �. From now on, in equations such as
Eq. �8�, we will not write the last two terms, those depending

TABLE I. First and second ionization potentials �IPs� for some
atoms �eV�. These results were obtained with spin polarization but
assuming spherical charge densities for ions and atoms. We used a
code originally written by Froyen, modified by Troullier and Mar-
tins, and modified and maintained by Garcia.

First IP Second IP

Atom Calc. Expt. Calc. Expt.

C 11.60 11.26 24.58 24.38

N 14.81 14.53 30.01 29.60

O 13.89 13.62 35.38 35.12

Al 5.94 5.99 18.97 18.83

Si 8.19 8.15 16.30 16.35

P 10.44 10.49 19.80 19.73

S 10.57 10.36 23.25 23.33

Zn 9.70 9.39 18.65 17.96

Ga 6.00 6.00 20.83 20.51

Ge 7.99 7.90 15.88 15.93

As 9.90 9.81 18.63 18.63

In 5.73 5.78 18.56 18.97
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on the derivative of the wave functions with respect to the
occupation f�.

To derive Eq. �6� we assumed linearity, aside from the
Janak theorem. The linearity results when the Kohn and
Sham eigenfunctions of the ground state are equal to those of
the ion, which is correct to a large extent.17 Coherently we
may neglect the last two terms in equations such as Eq. �8�,
and make the difference E�0�−E�−1� between two minima
an extremum. Then we minimize �extremize� e��0�−S� as
suggested in Eq. �6�. To do so we must write a variational
expression that, upon minimization �extremization�, leads to
a differential equation for the hole wave function
���−1 /2,r��. At this point we must set clearly what we imply
by the term “hole.” From Eq. �6� we see that we are adding
an electron to a hole state of the ion. The hole state might be
in a valence or conduction band, the only requirement being
that the state is empty in the ion. Thus by a “hole” we mean
“an electron filling an empty state” or “a particle excitation.”
This particle excitation may be in the valence or in the con-
duction band.

The expression e��0�−S� to be minimized is mixed in the
sense that the first term is an average for the wave function
���0,r�� of the neutral ground state, ����0��H0����0��, while
the second term S� is the self-energy of the hole state
���−1 /2,r�� belonging to the half ion. Then, as our first at-
tempt at a variational expression, we write

e� − S� � ����− 1/2�� − �2 − 2�
I

ZI

�r� − r�I�
+ 2� n0�r���

�r� − r���
d3r�

+
�Exc

�n0�r��
− VS����− 1/2�� , �9�

where n0�r�� does not include the hole wave function
���−1 /2,r�� because it comes from the one-particle Hamil-
tonian H0 of the neutral ground state.

Later we will describe a more convenient all-electron
variational expression, instead of the one-electron expression
in Eq. �9�. For the time being, aiming at comparing our
method with SIC, we perform the extremization and then
insert Eq. �8� to obtain the equation below with the top en-
tries in the brackets 	 
:

�− �2 − 2�
I

ZI

�r� − r�I�
+ 2� n0�r���

�r� − r���
d3r� +

�Exc

�n0�r��

− �1

2
� ���− 1/2,r�������− 1/2,r���

�r� − r���
d3r�

− �1/2
1
� �2Exc

�n0�r���n0�r���
���− 1/2,r����

����− 1/2,r���d3r�����− 1/2,r�� = �����− 1/2,r�� .

�10�

If we insert Eq. �8� before extremization, we obtain Eq. �10�
with the bottom entries in 	 
. In this latter case, the next to
last term of the operator is exactly the term in the SIC
equation.6 Its effect is to exclude the electron being consid-

ered from the Hartree interaction. The last term in the opera-
tor, the exchange-correlation term, is very different from the
corresponding SIC term, since it depends on the whole den-
sity of the system and not only on the density of the � state.
The SIC equation, Eq. �10� with the bottom entries in 	 
, is
not what we want because the eigenvalue ��=e�−2S� and
not ��=e�−S� as the half ionization requires. It is worth
mentioning that in the calculation of band gaps, SIC overcor-
rects and halving it seems to be a better procedure.9

Except for atoms, solving Eq. �10� is very difficult, either
with the top or bottom entries in 	 
. One important problem
is that the solutions of Eq. �10� are not orthogonal. The SIC
solution for atoms is used in the ASIC method, which is
excellently reviewed in Ref. 9. In our case we proceed dif-
ferently. We introduce a parametrized self-energy potential
and use a variational expression that is an extremum for
variations in the parameter�s�. The first question to be an-
swered is whether it is possible to define a unique self-energy
potential that is state independent. In Table II we show a
study of how the atomic self-energy of many states vary with
the assumed self-energy potential. One sees that for s and p
orbitals, the self-energy does not vary much whether it is
calculated with s, p, and even d self-energy potentials. Of
course the self-energy potential that we will use is the one
corresponding to the atomic orbital dominating the crystal
energy bands around the gap. In extreme cases we can define
a self-energy potential that is angular momentum dependent,

VS = �
l

VS,l�r� �
m=−l

l

�l,m��l,m� . �11�

This possibility was explored in the case of diamond, as
shown in the discussion of our results.

TABLE II. Atomic self-energies �eV� �Eq. �7�� for some third-
row atoms and different valence electrons, calculated with self-
energy potentials �Eq. �18�� derived from half ionization of different
states. The fact that the self-energy of a given state has no important
dependence on the self-energy potential �that is, the entries in each
column for a given atom do not differ much� shows that, for prac-
tical purposes, one can neglect the state dependence of the self-
energy potential. In the table below, only the self-energies of d
states seem to be much dependent on the way the self-energy po-
tential is derived.

Half ionized Self-energy �eV�
Valence state s p d

Zn s 3.63 4.62

d 4.62 7.43

Ga s 3.15 3.67 4.67

p 3.44 3.02 3.91

d 4.75 4.02 8.12

Ge s 4.13 3.71 5.03

p 3.70 3.35 4.22

d 5.11 4.30 9.00

As s 4.11 3.73 5.26

p 4.26 3.93 4.73

d 5.33 4.57 9.79
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Thus, assuming a self-energy potential that is state inde-
pendent, we use the following variational expression:20,21

E�n,v,�� = K�n� −� V�p�� +
1

2
� V���� −� VS�

+� v�n − �� + Exc��� , �12�

where p is the proton number density, n=��f�����
� is the

electron number density made out of the squares of the wave
functions, f� are the occupation numbers, v is the Kohn-
Sham potential, � is the model density, VS is the given pa-
rametrized self-energy potential, K and Exc have their usual
meaning of kinetic and exchange correlations of the Kohn-
Sham DFT. The functional V��� is defined as

V���r��� = 2� ��r���
�r� − r���

d3r�. �13�

The functional E is an extremum for variations in any of
the three functions n, v, and �:

�1� �E /�v=0 leads to �=n.
�2� �E /��=0 leads to

v = − V�p� + V��� − VS + �Exc/�� . �14�

�3� �E /�n=0 leads to Schrödinger equations with poten-
tial v and eigenvalues e�, rewritten as

�− �2 − 2�
I

ZI

�r� − r�I�
+ 2� ��r���

�r� − r���
d3r� +

�Exc

���r��
− VS�r������r��

= e����r�� . �15�

Using Eq. �14� to determine � for given v and VS and
solving the Schrödinger equations, we find

E = �
�

f�e� −
1

2
� V���� + Exc��� −� �

�Exc

��
. �16�

It must be understood that both n and � are number densities
of N electrons, not N−1 /2. But the eigenvalues correspond
to a situation where 1/2 electron is removed if VS is well
chosen.

We want to find band gaps by taking the difference in
total energies due to different occupations f�. Maintaining
the Kohn and Sham potential v and the model density �,
solution of Eq. �14�, the band gap becomes a difference be-
tween eigenvalues e�. Now, because the total energy is a
variational functional, that is, an extremum for variations in
v, resulting from variations of the self-energy potential VS,
one should look for extreme eigenvalue differences,

��e� − e��
�VS

= 0. �17�

III. LDA-1/2 METHOD

Consider the case of an atom. We first prove that the
self-energy potential is given by

VS � − V�− 1/2,r� + V�0,r� , �18�

namely, the difference between the all-electron potentials of
the atom and of the half-ion.

We begin by writing the potential difference as

V�− 1/2,r� − V�0,r�

= �
0

−1/2

df�

�

� f�
�− 2

Z

r
+ 2� d3r�

n�r���
�r� − r���

+
�Exc

�n�r��
= �

0

−1/2

df��2� d3r�
n��r���
�r� − r���

+� d3r�
�2Exc

�n�r���n�r���
n��r���

+ �
0

−1/2

df��2� d3r�

�
�

f�

�n��r���
� f�

�r� − r���

+� d3r�
�2Exc

�n�r���n�r�����

f�

�n��r���
� f�

� ,

�19�

or for a certain value of f� in �−1 /2,0�

− V�− 1/2,r� + V�0,r� =� d3r�
n��r���
�r� − r���

+
1

2
� d3r�

�2Exc

�n�r���n�r���
n��r���

+� d3r�

�
�

f�

�n��r���
� f�

�r� − r���

+
1

2
� d3r�

�2Exc

�n�r���n�r�����

f�

�n��r���
� f�

.

�20�

Figure 1 depicts r times the self-energy potential for the
nitrogen atom, a typical case, for degrees of ionization I
ranging from 0.5 to −0.2. Observe that the ratio

V�f�,r� − V�0,r�
f�

�21�

has a very poor dependence on f�, meaning that in Eq. �20�
we can take the exchange-correlation �xc� functionals at the
full occupation f�=0. Then, comparing Eqs. �8� and �20�, our
proof is completed.

We will leave to another paper a discussion on the lone
hole solution we can get out of Eq. �10�. Here we are inter-
ested in calculating band gaps of semiconductors. For that
purpose we will repeat the atomic self-energy potential �Eq.
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�20�� in the whole lattice and calculate eigenvalues for “hole
bands.” But observe that the first term on the right of Eq.
�20�, when repeated in the whole crystal, diverges because it
is Coulomb type. On the other hand, as Fig. 1 shows, the
Coulomb tail of the atomic VS has no importance because the
wave function never goes far. Then, in using the self-energy
potential VS defined in the atoms, we first trim the potential
with a function as

	�r� = ��1 − � r

CUT
�n�3

, r 
 CUT

0, r � CUT .
� �22�

The idea is that the atomic self-energy potential is meaning-
ful only where the atomic wave function is not negligible. Of
course the trimmed self-energy potential is repeated through-
out the infinite crystal, so that we are actually calculating
“filled hole bands.” Due to the trimming, the Coulomb tail
�of −1 /2 electrons� of the atomic VS does not penetrate into
the neighboring atoms. With the trimming, the eigenvalues
e� in Eq. �15� become dependent on the trimming parameter
CUT. However, Eq. �17� sets a recipe for choosing the value
of CUT: one should make the energy gaps extreme.

The function in Eq. �22� has some important properties:
�1� Its derivative is also zero at r=CUT, so that its electric
field is zero at that point and the cutoff does not add to the
total charge of the atom. �2� The trimmed self-energy poten-
tial 	�r�VS�r� is wholly contained inside a sphere of radius
CUT, which facilitates its use in band-calculation methods
such as SIESTA and augmented plane wave–like �APW-like�.
The power n should be large so that the cutoff is sharp. In
actual practice we tried n=8 and n=50 with similarly good
results. Thus we adopted n=8, which is less abrupt and does
not introduce numerical problems into the programs. Figure
2 shows a typical behavior of a band gap as function of the
parameters defining the cutoff function. The first increase in
the band gap with CUT only means that we are getting more
of the valence-band self-energy as the cutoff is made at

larger radii. In principle the larger CUT is, the more we get
of the valence self-energy. After reaching a peak, the gap
decreases because: �i� the potential VS is penetrating into
neighboring atoms, tending to a uniform negative potential
everywhere in space, shifting downward all bands, valence
and conduction alike; and �ii� the self-energy potential per-
turbation, being broad, diffuses the excitation wave function,
thus making it to loose locality and self-energy. In other
words, the cutoff function should be broad enough so as to
include most of the excitation wave function and thin enough
so as not spread it. Thus, the procedure for determining CUT
is based on Fig. 2, namely, we look for the extreme band gap
according to Eq. �17�.

For a given atom and bonding type, the value of CUT
depends little on the chemical environment. Because we are
using CUT values that make the gaps extreme, small devia-
tions from the optimal values produce only second-order de-
viations in the gaps. In Fig. 3 we present the values of anion
p-state CUT optimized for arsenides, phosphides, and ni-
trides. The anion CUT value has a small dependence on the
chemical environment, which is approximately linear with
the compound bond length. However, the relative variation
produced in the energy gap is very small. This can be easily
verified in Fig. 2. Around the energy-gap maximum, the
range of CUT found in the optimization for all nitrides leads
to a change of only 0.05 eV in the energy-gap value. This
behavior was also verified for all other calculated com-
pounds. Therefore, we conclude that is very reasonable to
consider the same CUT value for the anion potentials. In
Table III we show the optimal values of the parameter CUT
of the trimming function 	 in Eq. �22�. The values for CUT
in the table reminds one of a table of ionic, covalent, or
atomic radii, but are not equal to any.

IV. RESULTS AND DISCUSSION

We calculated, within the LDA-1/2 approach, the elec-
tronic structure for several semiconductors. By comparing
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FIG. 1. �Color online� Self-energy potential �rVS� calculated for
the N atom at different ionizations I ranging from 0.5 to −0.2. The
lines bunch around that of I=0.5, which is made thicker. The wave
function u�2p ,r� for the ionized state �2p� is also shown. Also
shown is the potential after the cutoff by 	�r�.

FIG. 2. �Color online� Band gap of GaN as function of the
parameter CUT of the cutoff function 	�r� applied to the self-
energy potential of N 2p. The band-gap extreme values depend to
some extent on the exponent n being used �n=8 and 50 are shown�.
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the LDA and LDA-1/2 calculation procedures, the LDA-1/2
calculations lead to not more computational effort than stan-
dard LDA, because the values of CUT depend only on the
atoms, not on their environment, and are calculated just
once. This is a great advantage of our method. Most of the
calculations were made with the code Vienna Ab initio Simu-
lation Package �VASP� using the ultrasoft pseudopotential22,23

to which we added the trimmed self-energy potential. In
some instances we repeated the calculations with the SIESTA

code24 and the results differed by no more than 0.1 eV. The
two codes are so different, for they use different basis func-
tions and pseudopotentials, that the agreement of their results
runs in favor of the reliability of our LDA-1/2 procedure.
The k-space integrals were approximated by sums over a 9
�9�9 special point of the Monkhorst-Pack type within the
irreducible part of the Brillouin zone.25 The number of plane
waves for the expansion of wave functions was optimized for

each system, and it was basically the same value obtained for
optimization of the equivalent standard LDA calculation. The
lattice parameters used were the experimental ones.

The present LDA-1/2 proposal assumes that in promoting
an electron from the valence band to the conduction band,
the hole thus created is similar to the hole created in the
atomic photoionization. In other words, the hole has the ex-
tent of an atomic hole. If the hole in the extended system
overlapped N equal atoms, its self-energy would be 1 /N2 that
of the atomic hole, and the self-energy potential VS would be
1 /N that of the atom, or it would have to be calculated with
an ion with 1 /2N electrons removed. The results for the
semiconductors III-V and II-VI, to be presented shortly, defi-
nitely point to N=1, meaning that the hole in the solid re-
sembles much the hole in the atom. In fact, the valence band
of these semiconductors is known to be made of the anion
wave functions. On the other hand, for the IV elements Ge
and Si �and also for diamond�, the results point to N=2,
meaning that the hole covers the two atoms with covalent
bond.

The band gaps calculated with LDA-1/2 are presented in
Table IV. Here we must remember that LDA-1/2 is still a
scheme for calculating excitations, not the total energy and
the equilibrium lattice parameter. Whereas the LDA results
exhibit the well-known underestimation of the energy gap,
LDA-1/2 results present excellent agreement with experi-
ment. In general, by comparing the theoretical LDA and
LDA-1/2 band structures, we observe that, as in LDA-1/2 the
self-energy is removed, the valence states are now more lo-
calized and are pulled down in energy in comparison with
the LDA, which results in a larger energy gap.

The LDA-1/2 entries in Table IV require a further expla-
nation. In the cases marked with superscript “e,” we add the
trimmed self-energy potential derived from the half-ionized
anion p state and the trimmed self-energy potential derived
from the half-ionized cation d state. The questions then are
why are we adding the p correction to the anion and not the
s correction, and the d correction and not the s one to the
cation. The case of C, Si, and Ge, when we used −1 /4 and
not −1 /2 ionization, has been discussed above. Thus there
seems to be a certain degree of arbitrariness in a LDA-1/2
scheme. But that is not so because, from what is known from
the chemical bonding of these compounds, we could not pro-
ceed differently. Further we are always keeping in mind the
criterion of an extreme band gap �Eq. �17��. The case of
diamond �C� is even more puzzling because we are adding
trimmed self-energy s and p potentials to a single atom. In
this case we are defining the self-energy potential as in Eq.
�11� and approaching the method of Filippetti and Spalding.8

Again, Eq. �17� is our guide.
Figures 4–6 depict the corresponding band structures

�BSs� along the main symmetry directions of the Brillouin
zone �BZ� for Si, ZnO, and InN, comparing the LDA-1/2
with LDA. The zero of energy was placed at the top of the
valence band. We chose to show the BSs for these semicon-
ductors for two reasons: First, silicon is one of the most
important semiconductors. Second, we would like to show
the results for cases where the LDA fails completely, such as
InN, for which LDA gives a semimetal instead of a semicon-
ductor, and ZnO, which became a very interesting material

FIG. 3. �Color online� The optimized values of the parameter
CUT, in which we correct only the anion p state for nitrides, phos-
phides, and arsenides compounds.

TABLE III. Values of CUT that make the band gaps extreme,
that is, when the self-energy potential is defined by Eq. �18� and
trimmed by Eq. �22�. The optimal value of CUT, as is the case of an
ionic or covalent radius, is typical of each atom and the orbital that
was half ionized. In most cases only the anion matters.

Half ionized

Atom Orbital CUT �a.u.�

Si p 3.67

N p 2.90

As p 3.81

O p 2.67

Ga d 1.23

Ge p 3.46

P p 3.86

Zn d 1.665

S p 3.39

In d 2.126
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with large band gap, and the LDA predicts an energy gap
much smaller than the experimental value. Moreover, for
ZnO it is difficult to obtain the correct BS, even if perform-
ing quasiparticle calculations using GW if the starting point
is the standard LDA wave functions.26 From our results, we
observe that for Si, the LDA-1/2 dispersion relations are
similar to the LDA but with the correct band-gap energy. For
InN and ZnO, the same behavior as that for Si occurs, but

with some differences concerning the cation d states. In both
InN and ZnO, the semicore cation d states play an important
role. In the nitride, the states derived from the atomic 4d �In�
orbital lie close to the bottom of the valence band 2s �N�
orbital and hybridize with it.27 On the other hand, in ZnO,
the cation d states lie approximately in the middle of the
valence band. Moreover, recently it was shown that in both
cases the d states interact and hybridize with the top of va-

TABLE IV. Band energy gaps �eV� for several semiconductors obtained with the LDA-1/2 at experimen-
tal lattice constant, by using the VASP code and SIESTA �S�, compared with pure LDA, GW, and experimental
results in Ref. 32 except where noted. Direct energy gaps are denoted as �d� and the indirect ones as �i�. The
majority of the LDA-1/2 calculations were obtained using only the trimmed self-energy potential of p anion;
exceptions are noted.

LDA-1/2 LDA Expt. GW

C �i� 5.25 �S�a 4.13 5.47b 5.48–5.77c

C �d� 6.75 �S�a 5.54 7.3b

Si �i� 1.137, 1.21 �S� 0.51 1.17b 1.32,d 0.95–1.10c

Si �d� 2.9, 2.94 �S� 2.54 3.05, 3.40b

Ge �i� 0.70 0.08 0.66–0.74b 0.66–0.83c

AlN �d� 6.06 4.27 6.23 5.83–6.24c

GaN �d� 3.52e 1.95 3.507 3.15–3.47c

InN �d� 0.95e −0.29 0.7–1.9 0.20–0.33c

AlP �i� 2.79 1.47 2.52 2.59d

GaP �i� 2.36��−L� e 1.49��−X� 2.35 2.55d

InP �d� 1.12e 0.50 1.42 1.44d

AlAs �i� 2.73 1.34 2.24 2.15d

GaAs �d� 1.41 0.41 1.519 1.22,d 1.40–1.70c

InAs �d� 0.75 −0.34 0.417 0.31d

ZnO �d� 3.29e 0.83 3.4b 2.51–3.07c

ZnS �d� 3.68e 2.02 3.91b 3.21–3.57c

a−1 /4p−1 /4s.
bReference 33.
cReference 5.
dReference 18.
e−1 /2p anion–1 /2d cation.
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FIG. 4. Calculated band structures for Si �in eV�. Dashed lines
display LDA and solid lines represent LDA-1/2 results. The zero of
energy was placed at the top of the valence band.
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FIG. 5. Calculated band structures for ZnO �in eV�. Dashed
lines display LDA and solid lines represent LDA-1/2 results. The
zero of energy was placed at the top of the valence band.
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lence band, and in DFT-LDA there is an underestimation of
the binding energies of these semicore d states and conse-
quently an overestimation of their hybridization with the an-
ion. The enhanced p-d coupling then pushes up the valence-
band maximum and the energy gap becomes smaller.28–31 By
taking these facts into account, for InN and ZnO, LDA-1/2
corrects not only the top of valence but also the cation d
states. Thus, by comparing the LDA with LDA-1/2 band
structures, we observe that the latter has the cation d orbitals
deeper in energy. This effect is more pronounced in InN. In
both cases, ZnO and InN, LDA-1/2 is remarkable, leading to
values very near the experimental ones. In order to study
deeply the influence of the cation d state in both InN and
ZnO, in Table V we present the results for the VBW and
energy gap at different levels of the LDA-1/2 procedure. We
observe that in the case of ZnO, the O p-state correction
increases the VBW and the Zn d-state correction decreases
the VBW. The combination of �O p�+ �Zn d� corrections pre-
sents a smaller VBW than the pure LDA calculation. How-
ever, both corrections increase the value of the energy gap.
The combination of O p and Zn d corrections results in en-

ergy gap in very good agreement with experiment, which
again states the importance of taking into account the cation
d state. It is worth to point out that we obtain this good
result, in spite of the fact that the position of Zn d state
��5 eV below the top of valence band� is higher in energy
than the experimental data ��7.8 eV�.34 In the case of InN,
as the d state is deeper than in the case of ZnO, the In d-state
correction is more important for the VBW value, while the
N p correction is more important for the energy-gap value.
Particularly, with �N p�+ �In d� correction we obtain a value
for the energy gap which is in good agreement with experi-
ment. Moreover, our full N p+In d LDA-1/2 calculation is in
precise agreement with the measured value obtained from
x-ray photoemission spectroscopy experiments,35 from
which the d state of In atom is found to lie 16.0 eV below the
valence-band maximum.

In order to analyze the band dispersion in more detail, we
also performed calculations to obtain the conduction-band
effective masses. Thus, now we focus our attention on the
electronic structure around the conduction-band minima. We
fit a parabola to the curves of energy versus k around the
conduction-band minimum up to 1.0% along the main sym-
metry directions of the Brillouin zone. Considering the de-
generacies and making weighted averages, we obtain the
electron effective masses. Table VI summarizes the effective
conduction-band masses for several semiconductors. Since a
negative value for the LDA InN band gap was obtained, it
was not possible to calculate an effective mass in that case
and only the LDA-1/2 value is shown. We note from the
table that the LDA-1/2 method systematically gives larger
electron effective masses than LDA. This is due to the fact
that with the LDA underestimation of band-gap energy, the
k� · p� interaction between valence band �VB� and conduction
band �CB� is stronger, leading to smaller effective masses.
Therefore, in the cases where the correction of the energy
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FIG. 6. Calculated band structures for InN �in eV�. Dashed lines
display LDA and solid lines represent LDA-1/2 results. The zero of
energy was placed at the top of the valence band.

TABLE V. InN and ZnO valence-band width �VBW� and band-
gap energy values at different levels of the LDA-1/2 calculation
procedure. The levels presented are: �i� standard LDA calculation,
�ii� LDA-1/2 anion p correction only, �iii� LDA-1/2 cation d cor-
rection only, and �iv� full LDA-1/2 anion p+cation d corrections.

Correction VBW �eV� Band gap �eV�

ZnO None 17.72 0.83

O p 19.44 2.14

Zn d 17.01 1.48

�O p�+ �Zn d� 17.28 3.29

InN None 15.25 −0.29

N p 14.49 1.16

In d 18.23 −0.49

�N p�+ �In d� 16.85 0.95

TABLE VI. Effective masses �units of electron free mass me� for
several semiconductors obtained with the LDA-1/2 at experimental
lattice constant, compared with pure LDA and experimental results.
The calculations were made using the VASP code. The experimental
data were extracted from Ref. 32 except where noted. The same
trimmed self-energy potential used in Table IV are also used here.

Electron effective mass

LDA-1/2 LDA Expt.

AlN 0.38 0.30

GaN 0.30 0.17 0.18–0.29

InN 0.12 0.11–0.23

AlP 0.256 0.18

GaP 0.17 0.10 0.09–0.17

InP 0.088 0.04 0.077–0.081

AlAs 0.064 0.022 0.06–0.15

GaAs 0.064 0.026 0.065–0.07

InAs 0.047 0.033 0.023–0.03

ZnO 0.39 0.14 0.3–0.36a

ZnS 0.26 0.16

aReference 36.
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gap is more pronounced, the difference between the LDA
and LDA-1/2 electron effective masses is larger. This is the
same case as, e.g., the GaAs and ZnO, for which the LDA
values agree rather poorly with experimental data, and the
LDA-1/2 gives excellent agreement with experiment. More-
over, if we take a look at the whole table, we will observe
that the LDA-1/2 effective masses are generally in very good
agreement with experimental data. Therefore, the LDA-1/2
not only improves the band gaps as a “scissors operator”
approach, but also provides reliable important band
structure-derived properties, such as the effective masses.

V. SUMMARY

The very important problem concerning the calculation of
excitations in solids is addressed and a method to overcome
this problem is developed. The method is inspired by the
simple half-ionization method. The localization of the hole
created by promoting an electron from the valence band to

the conduction band follows naturally from the method. The
hole is shown to be representable by a square-integrable
wave function, instead of the usual Bloch wave hole of band-
structure calculations.

The major success of this method is its reliable descrip-
tion of excited states in solids, giving band-gap energies,
effective masses, and band structures in very good agreement
with experiment, even in the cases for which the LDA mark-
edly fails, such, e.g., ZnO and InN. The method is not more
computationally demanding than the LDA calculations.
Moreover, the method is general and can be applied to a
broad class of DFT self-consistent methods, all-electron and
pseudopotential based.
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